Biopower

Kevin Craig
National Renewable Energy Laboratory

Biopower

Grid Conected Electricity from Renewables

sources: UDI, Edison Electric Institute, EIA

note: amount reported for paper industry represents only the total capacity dedicated to producing electricity for the grid

Projected Cost of Electricity from Biomass

- Substantial existing industry (1% of U.S. generating capacity)
- Entirely residue based (agricultural, forest products, etc.)
- Future fuel will be blend of residues and energy crops
- Using biomass for power generation reduces emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and carbon dioxide (CO2)

All Energy Sources (94.2 Quadrillion Btu)

Renewable Energy Sources (7.1 Quadrillion Btu)

Totals may not equal sum of components due to independent rounding.

Source: EIA's Renewable Energy Annual 1998

Biomass & Bioenergy Flows

Biomass and Bioenergy Criteria for Success

Paths to Biopower

Existing Industry7,000 MW
Average 20% Efficiency
100% Residue Based

Offsetting Emissions of Existing
Fossil Generation - A Low Cost Option
Several successful Demo's
35% Efficiency
SOx and Some NOx Reduction
Market Encourages Energy Crops
Results in No Capacity Addition

High Efficiency Options

Gas Turbines, Fuel Cells
40+% Efficiency
Significant Interest by Cogenerators
e.g. Pulp & Paper industry
Small Demo's in Europe& U.S.

Distributed Generation/Village Power

Micro-Turbines, Fuel Cells, Stirling Engines Fuel Flexible; Efficient Simple to Operate Minimal Environmental Impacts

Relationship of Various BioPower Technologies

Development and Commercialization Projects

Biomass Power for Rural Development

Integrated demonstration projects

- Salix Consortium
 - Hybrid willows for cofiring in NY
- Chariton Valley
 - Switchgrass for cofiring in SE Iowa
- Energy Performance Systems (EPS)
 - Novel tree harvesting for Whole Tree Burner(TM) in Minnesota

Battelle Indirect Gasifier Demonstration Project

- Biomas fuel gas cofired in existing 50 MW wood-fired boiler in Burlington, VT
- Tightly coupled to Pulp and Paper Industries of the Future Program

Small Modular Biopower Systems

- Target: Distributed generation and village power systems
- Size: 5kW 5 MW
- Goals: Clean, efficient, fuel-flexible, economically competitive
- Status: 10 feasibility studies completed; prototype testing in CY2000

Integrated Feedstock Production and Conversion Collaboratives tion Integration

Quincy Library (1997)Roundtables (1994-7)

Dunkirk (1998) Greenidge (1996)

>50 ha Salix 3 Major ongoing projects (1995-)

Salix for cofiring (NY)

Switchgrass (IA)

Alfalfa for protein and

electricity (MN)

New Bern

NGO + EPRI + Govt (1993) National Biofuels Roundtable

Brabazon Discussion

Princeton 1990 N

South Fast

CONEG

Cofiring

RFP - 1994 (BPfRD)

Biomass Power for Rural Development Cost Shared with industry and USDA

LOI-1993 10 Studies

cost shared with Biofuels

and EPRI

NOI - 1991(> 40 Responses)

DOE-Biomass Power Sponsored activities

Research

Prefeasibility

Development

Commercial

Stage of Development

Biomass Power for Rural Development New York Willow Project (Salix Consortium)

- Location: central & western New York
- DOE Partners:
 - Niagara Mohawk Power Corp.
 - South Central NY Res. Cons. & Dev. Agency
 - 26 local farmers & NY grape growers
 - New York State Gas & Elec.
 - NY Gas
 - General Public Utilities
 - Burlington Electric Department
 - SUNY--Cornell--Univ. of Toronto
 - NYSERDA
 - Gas Research Institute
 - EPRI
 - Case Corp.
 - John Deere Corp.
 - USDA

PROJECT COST-SHARING

Recent Accomplishments:

- 140 acres of willows planted
- System retrofit and test burn at NYSEG's Greenidge Station
- Design and fuel supply plan completed for NIMO Dunkirk Station
- Modified willow planter tested

Biomass Power for Rural Development Chariton Valley Co-firing Project

Location: South-central lowa

- DOE Partners:

- Chariton Valley RC&D
- IES Utilities (Ottumwa Station)
- Local Farmers & Landowners
- Iowa Farm Bureau Federation
- Iowa State University
- R.W. Beck (Engineering Firm)
- Iowa Dept. of Natural Resources
- Iowa Division of Soil Conservation
- Energy Research Corp.
- ABB/CES (Asea Brown Boveri/Combustion Engineering Systems)
- Soil and Water Conservation Districts

PROJECT COST-SHARING

START DATE: 05/06/96; END DATE: 10/31/01

Recent Accomplishments:

- Growers cooperative established
- 4,000 CRP acres committed to project
- Design of plant modifications for test-burn in progress

Vermont IGCC Scale-up Project

- Location: Burlington, Vermont
- DOE Partners:
 - FERCO
 - Burlington Electric Dept.
 - Battelle Memorial Institute
 - McNeil Power Station
 - Zurn Industries
 - IEA Zurn
 - OEC/Enron
 - Bechtel
 - NREL

heat recovery

Project Details:

- Project Size/Capacity: 15 MW
- Technology: Indirect Gasification
- Feedstock: Willow (200 ton/day)

PROJECT COST-SHARING

DOE Biomass/Coal Cofiring Activities

Locations:

- New York
- Pennsylvania
- Indiana
- Alabama
- Vermont

DOE Partners:

- EPRI
- Niagara Mohawk Power Corp.
- New York State Gas & Elec.
- IES Utilities
- TVA
- General Public Utilities
- NIPSCO
- Southern Companies
- Burlington Electric Dept.
- NY Gas
- SUNY, Cornell, Univ. Of Toronto
- Auburn Univ.
- NYSERDA
- Southern Research Inst.
- USDA

Projects:

- Salix (BPfRD)
- Chariton Valley (BPfRD)
- Southern Research cofiring project
- DOE/EPRI Cofiring Demonstrations GPU (Seward) NIPSCO (Bailly) TVA (Allen)
- FETC/SNL/NREL Cofiring Collaborative Supporting research

Biomass Cofiring in the U.S.

Paths to Cofiring

"Sprinkle" Method

Minimal equipment/cost Limited to low-percentage cofiring Co-mingles ash

Separate Firing

Two Methods

- Same mill (A)
- Separate mill (B)

Higher cofiring percentages possible (esp. B) Additional cost (esp. B) Mill throughput limitations (A) Comingles ash

Gasifier Cofiring

High percentage cofiring
Additional cost
Minimal impact on exisitng operation
Ability to use "problem" feedstocks
Potential for NOx reburning
Segregates biomass ash

Cofiring Development

Research Development Commercial Stage of Development

Cofiring Issues

- Potential for Power Loss
- Manpower requirements
- Emissions Impacts
 Fuel NOx
 De-NOx impacts
 SOx
 TSP's
- Not widely perceived as "green"
- Potential Impact on Ash Sales
- Feedstock Infrastructure

DOE's Small Modular Biopower Projects

To provide power in the 5 kW - 5 MW range

To develop small modular biopower systems that:

- are fuel flexible
- are efficient
- are simple to operate
- have minimum negative impacts on the environment
- are for domestic and international markets

Multi phase Project:

Phase 1: Feasibility Studies

Phase 2: Prototype Development and Testing

Phase 3: Integrated Systems Demonstration

Team Management - DOE, NREL, SNL

DOE's Small Modular Biopower Projects

Phase 1 Contracts Awarded

		· ·
Agrilectric	Fluid-Bed Combustor/Steam Turbine	500 - 5000kW
Bechtel	Gasifier/Engines/Gas Turbine	500 - 1500kW
Bioten	Direct-Fired Combustion Turbine	5000kW
Carbona Corp	Gasification/ Steam Turbine	1000 - 3000kW
Community Power Corp	. Gasification/IC Engine	10 - 25kW
EERC	Fluid-Bed Combustor/Steam Turbine	500 - 5000kW
Niagara Mohawk	Gasification/IC Engine/Gas Turbine	500 - 5000kW
Reflective Energies	Gasification/Gas Turbine	100 - 1000kW
STM	Gasification/Stirling Engine	25 - 70kW
Sunpower	Gasification/Stirling Engine	1 - 10kW

Working with Stakeholders

Independent testing
Technical support
Integration research
Next generation systems

Technical advice & support Analysis Methods Issue Identification Independent analysis Integration research Technical solutions

Modular Systems

Components
Operational questions
Market needs

Research priorities
Integration issues
Environmental impact
Life cycle analysis
Process designs
Cost/efficiency

Analysis

Experimental Capabilities

Operational Data
Concept evaluation
Emissions data

Technical support
Analysis methods
Data management
Issue Identification

Deployment and Major Projects

Feedstock & Operational questions Technical barriers Technology needs

> Operational Data Feedstock questions

Plant Operators

Working with Stakeholders

Resource assessment Analysis methods Technical solutions Training

Technical Advice Analysis methods Technical solutions

Deployment and Major Projects

Market needs
Market barriers
Technology needs
Impact of possible policies

Goals
Program Priorities
Proposed Policies

International

Analysis & Expertise "Virtual Assistance Center"

Technical Questions
Planning info.

DOE & Other Gov't Agencies

Implementation Synthesis of results

Environmental and economic impacts of current and proposed policies and projects

Technical Advice Analysis support Impact assessment

Extramural Clients
(AF&PA, CEC, NCASI, Winrock, World Bank, USAID, IPP, Misc Small Companies)